Maths Class 9 Notes for Volume and Surface Area

SOLIDS : The bodies occupying space (i.e. have 3-dimension) are called solids such as a cuboid, a cube, a cylinder, a cone, a sphere etc.

VOLUME (CAPACITY) OFA SOLID: The measure of space occupied by a solid-body is called its volume. The units of volume are cubic centimeters (written as cm 3) or cubic meters (written as m3).

CUBOID: A solid bounded by six rectangular faces is called a cuboid.

In the given figure, ABCDEFGH is a cuboid whose
(i) 6 faces are :
$\mathrm{ABCD}, \mathrm{EFGH}, \mathrm{ABFE}, \mathrm{CDHQ} \mathrm{ADHE}$, and BCGF Out of these, the four faces namely ABFE, DCGH, ADHE and BCGF are called lateral faces of the cuboid.
(ii) 12 edges are :

AB, BC, CD, DA, EF, FG GH, HE, CG BF, AE and DH
(iii) 8 vertices are :

A, B, C, D, E, F, and H.
Remark : A rectangular room is in the form of a cuboid and its 4 walls are its lateral surfaces.
Cube : A cuboid whose length, breadth and height are all equal, is called a cube.
A cube has 6 faces, each face is square, 12 edges, all edges are of equal lengths and 8 vertices.

SURFACE AREA OF A CUBOID:

Let us consider a cuboid of length $=1$ units
Breadth $=\mathrm{b}$ units and height $=\mathrm{h}$ units

Then we have :
(i) Total surface area of the cuboid $=2\left(l^{*} b+b * h+h * l\right)$ sq. units
(ii) Lateral surface area of the cuboid $=\left[2(1+b)^{*} h\right]$ sq. units
(iii) Area of four walls of a room $=\left[2(1+b)^{*} h\right]$ sq. units.
$=($ Perimeter of the base $*$ height $)$ sq. units
(iv) Surface area of four walls and ceiling of a room
= lateral surface area of the room + surface area of ceiling
$=2(1+b) * h+1 * b$
(v) Diagonal of the cuboid $=\sqrt{ } \mathrm{l}^{2}+\mathrm{b}^{2}+\mathrm{h}^{2}$

SURFACE AREA OF A CUBE : Consider a cube of edge a unit.
(i) The Total surface area of the cube $=6 \mathrm{a}^{2}$ sq. units
(ii) Lateral surface area of the cube $=4 a^{2}$ sq. units.
(iii) The diagonal of the cube $=\sqrt{ } 3$ a units.

SURFACE AREA OF THE RIGHT CIRCULAR CYLINDER

Cylinder: Solids like circular pillars, circular pipes, circular pencils, road rollers and gas cylinders etc. are said to be in cylindrical shapes.

Curved surface area of the cylinder
= Area of the rectangular sheet
$=$ length $*$ breadth
$=$ Perimeter of the base of the cylinder * height
$=2 \pi r * h$
Therefore, curved surface area of a cylinder $=2 \pi \mathrm{rh}$
Total surface area of the cylinder $=2 \pi r h+2 \pi r^{2}$
So total area of the cylinder $=2 \pi r(r+h)$
Remark : Value of TE approximately equal to 22 / 7 or 3.14 .

APPLICATION:

If a cylinder is a hollow cylinder whose inner radius is $r 1$ and outer radius $r 2$ and height h then

Total surface area of the cylinder
$=2 \pi \mathrm{r}_{1} \mathrm{~h}+2 \pi \mathrm{r}_{2} \mathrm{~h}+2 \pi\left(\mathrm{r}_{2}{ }_{2}-\mathrm{r}^{2}{ }_{1}\right)$
$=2 \pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \mathrm{h}+2 \pi\left(\mathrm{r}_{2}+\mathrm{r}_{1}\right)\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)$
$=2 \pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)\left[\mathrm{h}+\mathrm{r}_{2}-\mathrm{r}_{1}\right]$

SURFACE AREA OF A RIGHT CIRCULAR CONE

RIGHT CIRCULAR CONE

A figure generated by rotating a right triangle about a perpendicular side is called the right circular cone.

SURFACE AREA OF A RIGHT CIRCULAR CONE:

curved surface area of a cone $=1 / 2 * 1 * 2 \pi r=\pi r l$
where r is base radius and 1 its slant height
Total surface area of the right circular cone

$=$ curved surface area + Area of the base
$=\pi \mathrm{rl}+\pi \mathrm{r} 2=\pi \mathrm{r}(\mathrm{l}+\mathrm{r})$
Note $: l^{2}=r^{2}+h^{2}$

By applying Pythagorus
Theorem, here h is the height of the cone.
Thus $\mathrm{l}=\sqrt{ } \mathrm{r}^{2}+\mathrm{h}^{2}$ and $\mathrm{r}=\sqrt{ } \mathrm{l}^{2}-\mathrm{h}^{2}$
$\mathrm{h}=\sqrt{ } \mathrm{l}^{2}+\mathrm{r}^{2}$

SURFACE AREA OF A SPHERE

Sphere: A sphere is a three dimensional figure (solid figure) which is made up of all points in the space which lie at a constant distance called the radius, from a fixed point called the centre of the sphere.

Note : A sphere is like the surface of a ball. The word solid sphere is used for the solid whose surface is a sphere.

Surface area of a sphere: The surface area of a sphere of radius $r=4 x$ area of a circle of radius $\mathrm{r}=4 * \pi \mathrm{r}^{2}$
$=4 \pi r^{2}$
Surface area ofa hemisphere $=2 \pi r^{2}$
Total surface area of a hemisphere $=2 \pi r^{2}+\pi r^{2}$
$=3 \pi r^{2}$
Total surface area of a hollow hemisphere with inner and outer radius r_{1} and r_{2} respectively
$=2 \pi \mathrm{r}^{2}{ }_{2}+2 \pi \mathrm{r}^{2}{ }_{2}+\pi\left(\mathrm{r}^{2}{ }_{2}-\mathrm{r}^{2}{ }_{1}\right)$
$=2 \pi\left(\mathrm{r}^{2}{ }_{1}+\mathrm{r}^{2}{ }_{2}\right)+\pi\left(\mathrm{r}_{2}{ }_{2}-\mathrm{r}^{2}{ }_{1}\right)$

VOLUMES

VOLUME OF A CUBOID :

Volume : Solid objects occupy space.
The measure of this occupied space is called volume of the object.
Capacity of a container : The capacity of an object is the volume of the substance its interior can accommodate.

The unit of measurement of either of the two is cubic unit.
Volume of a cuboid : Volume of a cuboid =Area of the base * height V=l * b * h
So, volume of a cuboid $=$ base area $*$ height $=$ length $*$ breadth $*$ height
Volume of a cube : Volume of a cube $=$ edge $*$ edge $*$ edge $=a^{3}$
where $\mathrm{a}=$ edge of the cube

VOLUME OF A CYLINDER

Volume of a cylinder $=\pi r^{2} h$
volume of the hollow cylinder $\pi \mathrm{r}^{2}{ }_{2} \mathrm{~h}-\pi \mathrm{r}^{2}{ }_{1} \mathrm{~h}$
$=\pi\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}{ }^{2}\right) \mathrm{h}$

VOLUME OF A RIGHT CIRCULAR CONE

volume of a cone $=1 / 3 \pi r^{2} h$, where r is the base radius
and h is the height of the cone.

VOLUME OF A SPHERE

volume of a sphere the sphere $=4 / 3 \pi r^{3}$, where r is the radius of the sphere.
Volume of a hemisphere $=2 / 3 \pi r^{3}$
APPLICATION : Volume of the material of a hollow sphere with inner and outer radii r_{1} and r_{2} respectively
$=4 / 3 \pi \mathrm{r}^{3}{ }_{2}-4 / 3 \pi \mathrm{r}^{3}{ }_{1}=4 / 3 \pi\left(\mathrm{r}^{3}{ }_{2}-\mathrm{r}^{3}{ }_{1}\right)$
Volume of the material of a hemisphere with inner and outer radius r_{1} and r_{2} respectively $=2 / 3 \pi\left(\mathrm{r}^{3}{ }_{2}-\mathrm{r}^{3}{ }_{1}\right)$

